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1 Every II1 Factor Has a Trace

This note is based on a set of slides Professor Popa used for the lecture.

1.1 Theorem and the hyperfinite II1 factor

Last time, we defined the hyperfinite II1 factor by constructing R0 with the trace state
τ . We can define the Hilbert space L2(R0) as the completion of R0 with respect to the

Hilbert-norm ‖y‖2 = τ(y∗y)1/2, and denote R̂0 as the copy of R0 as a subspace of L2(R0).
For each x ∈ R0, define the operator λ(x) on L2(R0) by λ(x)(ŷ) = x̂y for all y ∈ R0.

Note that x 7→ λ(x) is a *-algebra morphism R0 → B(L2) with ‖λ(x)‖ = ‖x‖ for all x.
Moreover, 〈λ(x)(1̂), 1̂〉L2 = τ(x).

We can similarly define ρ(x) to be the right multiplication operator. Then λ and ρ
commute. Last time, we showed that the von Neumann algebra R = λ(R0)

wo
is a II1

factor.
One other way to define R is as the completion of R0 in the topology of convergence

in hte norm ‖x‖2 = τ(x∗x)1/2 of sequences that are bounded in the operator norm. Notice
that, in both definitions, τ extends to a trace state on R. If one denotes by D0 ⊆ R0 the
natural “diagonal subalgebra,” then (D0, τ |D0) coincides with the algebra of dyadic step
functions on [0, 1] with the Lebesgue integral. So its closure in R in the above topology,
(D, τ |D) is just (L∞([0, 1]),

∫
dµ).

Also, (R0, τ) (and thusR) is completely determined by the sequence of partial isometries
v1 = e11,2, vn = (

∏n−1
i=1 e

i
2,2)e

n
1,2 for n ≥ 2 with pn = vnv

∗
n; these satisfy τ(pn) = 2−n and

pn ∼ 1−
∑n

i=1 pi.

Theorem 1.1. Let M be a von Neumann factor. The following are equivalent:

1. M is a finite von Neumann algebra; i.e. if p ∈ P (M) satisfies p ∼ 1 = 1M , then
p = 1 (any isometry in M is necessarily a unitary element).

2. M has a trace state (i.e. a functional τ : M → C that is positive, τ(x∗x) ≥ 0,
τ(1) = 1, and τ(xy) = τ(yx) for all x, y ∈M).
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3. M has a trace state τ that is completely additive (i.e. τ(
∑

i pi) =
∑

i τpi) for for
all mutually orthogonal projections P(M).

4. M has a trace state τ that is normal (i.e. τ(supi xi) = supi τ(xi) if (xi)i ⊆ (M+)1
is an increasing net).

So a von Neumann factor is finite if and only if it is tracial. Moreover, such a factor has
the unique trace state τ , which is automatically normal, faithful, and satisfies co{uxu∗ :
u ∈ U(M)} ∩ C1 = {τ(x)1} for all x ∈M .

These are progressively stronger conditions, so we need only show that (4) =⇒ (1).
We need some lemmas.

1.2 Projections in a finite von Neumann factor

Lemma 1.1. If a von Neumann factor M has a minimal projection, then M = B(`2(I))
for some I. Moreover, if M = B(`2(I)), then the following are equivalent:

1. M has a trace

2. |I| <∞.

3. M is finite, i.e. if u ∈M with u ∗ u = 1, then uu∗ = 1.

Proof. If we have a trace in finite dimensions, split 1 = p1 + p2 into two projections onto
infinite dimensional subspaces. Since trace is additive and p1 ∼ p2, τ(p1) = τ(p2) = 1. Do
the same with p2 to get p3 and p4. But then 1 = p1 + p3 + p4, where τ(p1) = τ(p3) =
τ(p4) because these projections are equivalent. But this gives τ(p1) = 1/3, which is a
contradiction.

Lemma 1.2. If M is finite, then

1. If p, q ∈ P (M) are such that p ∼ q, then 1− p ∼ 1− q.

2. pMp is finite for all p ∈ P (M); i.e. if q ∈ P (M) and q ≤ p with q ∼ p, then q = p.

Proof. Use the comparison theorem.

Lemma 1.3. If M is a von Neumann factor with no atoms (so p ∈ P (M) has dim(pMp) =
∞), then there exist P0, P1 ∈ P (M) with P0 ∼ P1 and P0 + P1 = p.

So we can split p into two equivalent projections.

Proof. Consider the family F = {(p0i , p1i )i : p0i , p
1
j mut. orth.,≤ p, p0i ∼ p1i } with the order-

ing from inclusion. Obtain a maximal element of F . If (p0i , p
1
i )i∈I is a maximal element,

then P0 =
∑

i p
0
i and P1 =

∑
o p

1
i will do; if not then the comparison theorem gives a

contadiction.
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Lemma 1.4. If M is a factor with no minimal projections, there exists a sequence of
mutually orthogonal projections (pn)n ⊆ P (M) such htat pn ∼ 1−

∑n
i=1 pi for all n.

Proof. Apply the previous lemma recursively.

Lemma 1.5. If M is a finite factor and (pn)n are as in the previous lemma, then

1. If p ≺ pn for all n, then p = 0. Equivalently, if p 6= 0, there exists some n such that
pn ≺ p. Moreover, if n is the first integer such that pn ≺ p and p′n ≤ p with p′n ∼ pn,
then p− p′n ≺ pn.

2. If (qn)n ⊆ P (M) is increasing, qn ≤ q ∈ P (M), and q − qn ≺ pn for all n, then
qn ↗ q (with SO convergence).

3.
∑

n pn = 1.

Proof. If p ∼ p′n ≤ pn for all n, then P =
∑

n p
′
n, and P0 =

∑
k p
′
2k+1 satisfy P0 < P and

P0 ∼ P . This contradicts the finiteness of M .

Lemma 1.6. Let M be a finite factor without atoms. If p ∈ P (M) is nonzero, then there
is a unique infinite sequence 1 ≤ n1 < n2 < · · · such that p decomposes as p =

∑
k≥1 p

′
nk

for some (pnk
)k ⊆ P (M) with p′nk

∼ pnk
for all k.

Proof. Apply part (1) of the previous lemma recursively. By part (2), the sum converges
to p.

Definition 1.1. If M is a finite factor without atoms, the dimension is dim : P (M) →
[0, 1] given by dim(p) = 0 if p = 0 and dim(p) =

∑∞
k=1 2−nk if p 6= 0, where n1 < n2 < · · ·

are gven by the previous lemma.

Lemma 1.7. dim satisfies the following conditions:

1. dim(pn) = 2−n.

2. If p, q ∈ P (M), then p ≤ q iff dim(p) ≤ dim(q).

3. dim is completely additive: if qi ∈ P (M) are mutually orthogonal, then dim(
∑

i qi) =∑
i dim(qi).

1.3 The Radon-Nikodym trick

We claim that dim extends to the trace τ on (M)+ in the following way. If 0 ≤ x ≤ 1,
then x =

∑∞
n=1 2−nen. So if we put τ(x) =

∑
2−n dim(en), this is well-defined. Now if

x ∈ (M)h, we can take τ(x) = τ(x+)− τ(x−). And then we can extend this to M . But we
have a problem; we cannot tell that this τ is linear.
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Lemma 1.8 (“Radon-Nikodym trick”). Let ϕ,ψ : P (M) → [0, 1] be completely additive
functions with ϕ 6= 0 and ε > 0. There exists a p ∈ P (M) with dim(p) = 2−n for some
n ≥ 1 and θ ≥ 0 such that θϕ(q) ≤ ψ(q) ≤ (1 + ε)θϕ(q) for all q ∈ P (pMp).

Intuitively, we want to think of ϕ,ψ like measures. In other words, we can take a small
part of the space where ϕ and ψ are almost multiples of each other.

Proof. Denote F = {p : ∃ns.t.p ∼ pn}. We may assume ϕ is faithful: take a maximal
family of mutually orthogonal nonzero projections (ei) with ϕ(ei) = 0 for all i. Then let
f = 1−

∑
i ei 6= 0 (because ϕ(1) 6= 0); it follows that ϕ is faithful on fMf , and by replacing

with some f0 ≤ f in F , we may also assume f ∈ F . Thus, proving the lemma for M is
equivalent to proving it for fMF , which amounts to assuming ϕ is faithful.

If ψ = 0, then we take θ = 0. If ψ 6= 0, then by replacing ϕ by ϕ(1)−1ϕ and ψ by
ψ(1)−1ψ, we may assume that ϕ(1) = ψ(1) = 1. We claim that this implies: There exists
a f ∈ F such that for all g0 ∈ F with g0 ≤ g, we have ϕ(g0) ≤ ψ(g0).

If not, then for all g ∈ F , there is a g0 ∈ F with g0 ≤ g such that ϕ(g0) > ψ(g0). Tkae
a maximal family of mutually orthogonal projections (gi)i ⊆ F with ϕ(gi) > ψ(gi) for all
i. If 1 −

∑
i gi 6= 0, then take g ∈ F with g ≤ 1 −

∑
i gi and apply this condition to get

g0 ∈ F with g0 ≤ g and ϕ(g0) > ψ(g0), contradicting maximality. Thus,

1− ϕ
(∑

i

gi

)
=
∑
i

ϕ(gi) >
∑
i

ψ(gi) = ψ

(∑
i

gi

)
= ψ(1) = 1,

a contradiction. So this case is impossible.
Define θ = sup{θ′ : θ′ϕ(g0) ≤ ψ(g0) ∀g0 ≤ g, g0 ∈ F}. Then 1 ≤ θ < ∞, and

θϕ(g0) ≤ ψ(g0) for all g0 ∈ F with g0 ≤ g. Moreover, by definition of θ, there exists some
g0 ∈ F with g0 ≤ g such that θϕ(g0) > (1 + ε)−1ψ(g0). We now repeat the argument for
ψ and θ(1 + ε)ϕ on g0Mg0 to prove the following:

We claim that there exists some g′ ∈ F with g′ ≤ g0 such that for all g′0 ∈ F with
g′0 ≤ g0, we have ψ(g′0) ≤ θ(1 + ε)ϕ(g′0). If not, then for all g′ ∈ F with g′ ≤ g0, there is a
g′0 ≤ g′ in F such that ψ(g′0) > θ(1 + ε)ϕ(g′0). But then take a maximal family of mutually
orthogonal g′i ≤ g0 such that ψ(g′i) ≥ θ(1 + ε)ϕ(g′i). Using one of the previous lemmas, we
get

∑
i g
′
i = g0. Then ψ(g0) ≥ θ(1 + ε)ϕ(g0) > ψ(g0). This is a contradiction. So the claim

holds for some g;∈ F with g′ ≤ g0. Taking p = g′, we get that any q ∈ F under p satisfies
both θϕ(q) ≤ ψ(q) and ψ(q) ≤ θ(1 + ε)ϕ(q). By complete additivity of ϕ and ψ, using a
previous lemma, we are done.

Now apply the lemma to ψ = dim and ϕ to be a vector state on M ⊆ B(H) to get the
following:

Lemma 1.9. For all ε > 0, there exists some p ∈ P (M) with dim(p) = 2−n for some n ≥ 1
and a vector state ϕ0 on pMp such that for all q ∈ P (pMp), (1 + ε−1ϕ0(q) ≤ 2n dim(q) ≤
(1 + εϕ0(q).
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We want to reproduce the linearity of the dimension function on pMp to the whole
space.

Lemma 1.10. With p, ϕ0 as above, let v1 = p, v2, . . . , v2n ∈ M such that viv
∗
i = p and∑

i viv
∗
i = 1. Let ϕ(x) :=

∑2n

i=1 ϕ0(vixv
∗
i ) for x ∈ M . Then ϕ is a normal state on M

satisfying ϕ(x∗x) ≤ (1 + ε)ϕ(xx∗) for all x ∈M .

Proof. Note first that ϕ0(x
∗x) ≤ (1 + ε)ϕ0(xx

∗) for all x ∈ pMp (do it first for when x is
a partial isometry, then for x with x∗x having finite spectrum). To deduce the inequality
for ϕ itself, note that if

∑
j v
∗
j vi = 1, then for any x ∈M ,

ϕ(x∗x) =
∑
i

ϕ0

(
vix
∗
(∑

j

v∗j vj

)
xv∗i

)
=
∑
i,j

ϕϕ0((vix
∗v∗j )(xjxvi))

≤ (1 + ε2)
∑
i,j

ϕ0((vjxvi)(vix
∗v∗j ))

= · · ·
= (1 + ε2)ϕ(xx∗).

Lemma 1.11. If ϕ is a state on M that satisfies ϕ(x∗x) ≤ (1 + ε)ϕ(xx∗) for all x ∈ M ,
then (1 + ε)−1ϕ(p) ≤ dim(p)(1 + ε)ϕ(p) for all p ∈ P (M).

Proof. By complete additivity, it is sufficient to prove it for p ∈ F , when we have v1, . . . , v2n

as in the previous lemma. Then ϕ(p) = ϕ(v∗j vj) ≤ (1 + ε)ϕ(vjv
∗
j ) for all j, so

2nϕ(p) ≤ (1 + ε)2
∑
j

ϕ(vjv
∗
j ) = (1 + ε)22n dim(p).

Similarly, 2n dim(p) = 1 ≤ (1 + ε)22nϕ(p).

1.4 Proof of the theorem

Now we can prove the theorem.

Proof. Define τ as mentioned before. By the previous lemma, for every ε > 0, there is
a normal state ϕ on M such that |τ(p) − ϕ(p)| ≤ ε for all p ∈ P (M). By definition of
|tau and the linearity of ϕ, this implies that |τ(x) − ϕ(x)| ≤ ε for all x ∈ (M+)1. So
|τ(x)− ϕ(x)| ≤ 4ε for all x ∈ (M)1. This implies that τ(x+ y)− τ(x)− τ(y)| ≤ 8ε for all
x, y ∈ (M)1. Since ε > 0 was arbitrary, we get that τ is a linear state on M .

By definition of τ , we also have τ(uxu∗) = τ(x) for all x ∈ M and u ∈ U(M). So τ is
a trace state. From the above argument it also follows that norm limit of normal states ϕ,
so τ is normal as well.
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This theorem also has a generalization.

Theorem 1.2. Let M be a von Neumann algebra that is countably decomposable (i.e. any
family of mutually orthogonal projections is countable). The following are equivalent:

1. M is a finite von Neumann algebra; i.e. if p ∈ P (M) satisfies p ∼ 1 = 1M , then
p = 1 (so any isometry in M is necessarily a unitary element).

2. M has a faithful, normal (equivalently completely additive) trace state τ .

Moreover, if M is finite, then there exists a unique normal faithful central trace, i.e. a
linear positive map ctr : M → Z(M) that satisfies ctr(1) = 1, ctr(z1xz2) = z1 ctr(x)z2, and
ctr(xy) = ctr(yx) for al lx, y ∈M and zi ∈ Z.

Any trace τ on M is of the form τ = ϕ0 ◦ ctr for some state ϕ on Z. Also, co{uxu∗ :
u ∈ U(M)} ∩ Z = {ctr(x)} for all x ∈M .

The central trace should be thought of like a conditional expectation onto Z(M).
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