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1 Every [l Factor Has a Trace

This note is based on a set of slides Professor Popa used for the lecture.

1.1 Theorem and the hyperfinite //; factor

Last time, we defined the hyperfinite I1; factor by constructing Ry with the trace state
7. We can define the Hilbert space L?(Ry) as the completion of Ry with respect to the
Hilbert-norm ||y|2 = 7(y*y)'/2, and denote I/%B as the copy of Rg as a subspace of L?(Ry).

For each = € Ry, define the operator A(z) on L?(Ry) by A (z)(y) = 7y for all y € Ry.
Note that = +— A(z) is a *-algebra morphism Ry — B(L?) with ||A(z)|| = ||=|| for all =.
Moreover, (\(z)(1),1)2 = 7(z).

We can similarly define p(z) to be the right multiplication operator. Then A and p
commute. Last time, we showed that the von Neumann algebra R = )\(RO)WO isa Il
factor.

One other way to define R is as the completion of Ry in the topology of convergence
in hte norm ||z||2 = 7(z*z)"/? of sequences that are bounded in the operator norm. Notice
that, in both definitions, 7 extends to a trace state on R. If one denotes by Dy C Ry the
natural “diagonal subalgebra,” then (Dy,7|p,) coincides with the algebra of dyadic step
functions on [0, 1] with the Lebesgue integral. So its closure in R in the above topology,
(D, T’D) Is just (LOO([()? 1])7 f d:u)'

Also, (Ro, 7) (and thus R) is completely determined by the sequence of partial isometries
V1 = €] g, Up = I eho)ely for n > 2 with p, = vyvy; these satisfy 7(p,) = 27" and
Pn~1— Z?:l Di-

Theorem 1.1. Let M be a von Neumann factor. The following are equivalent:

1. M is a finite von Neumann algebra; i.e. if p € P(M) satisfies p ~ 1 = 1y, then
p =1 (any isometry in M is necessarily a unitary element).

2. M has a trace state (i.e. a functional T : M — C that is positive, T(x*z) > 0,
7(1) =1, and T(zy) = 7(yz) for all x,y € M ).



3. M has a trace state T that is completely additive (i.e. 7(Y_,p;) = Y, Tpi) for for
all mutually orthogonal projections P(M).

4. M has a trace state T that is normal (i.e. T(sup; ;) = sup; 7(x;) if (zi);i € (My)
is an increasing net).

So a von Neumann factor is finite if and only if it is tracial. Moreover, such a factor has
the unique trace state 7, which is automatically normal, faithful, and satisfies co{uzu* :
ue UM)}NCL = {r(zx)1} for all x € M.

These are progressively stronger conditions, so we need only show that (4) = (1).
We need some lemmas.

1.2 Projections in a finite von Neumann factor

Lemma 1.1. If a von Neumann factor M has a minimal projection, then M = B((*(I))
for some I. Moreover, if M = B(¢%(I)), then the following are equivalent:

1. M has a trace
2. I < 0.
3. M s finite, i.e. if u € M with uxu =1, then uu* = 1.

Proof. If we have a trace in finite dimensions, split 1 = p; + p2 into two projections onto
infinite dimensional subspaces. Since trace is additive and p; ~ pe2, 7(p1) = 7(p2) = 1. Do
the same with py to get ps and ps. But then 1 = p; + ps + pg, where 7(p1) = 7(p3) =
7(p4) because these projections are equivalent. But this gives 7(p;) = 1/3, which is a
contradiction. O

Lemma 1.2. If M is finite, then

1. If p,q € P(M) are such that p~ q, then 1 —p~1—gq.

2. pMp is finite for allp € P(M); i.e. if ¢ € P(M) and q < p with q ~ p, then g = p.
Proof. Use the comparison theorem. O

Lemma 1.3. If M is a von Neumann factor with no atoms (sop € P(M) has dim(pMp) =
00), then there exist Py, Py € P(M) with Py ~ Py and Py + Py = p.

So we can split p into two equivalent projections.

Proof. Consider the family F = {(p¥,p}); : p?,pjl- mut. orth., < p,p) ~ pl} with the order-
ing from inclusion. Obtain a maximal element of F. If (p}, p});cs is a maximal element,
then Py = ), p? and P, = ), ;UZ1 will do; if not then the comparison theorem gives a
contadiction. ]



Lemma 1.4. If M is a factor with no minimal projections, there exists a sequence of
mutually orthogonal projections (pn)n € P(M) such htat p, ~1—>"" | p; for all n.

Proof. Apply the previous lemma recursively. O
Lemma 1.5. If M is a finite factor and (py)n are as in the previous lemma, then

1. If p < p, for all n, then p = 0. Equivalently, if p # 0, there exists some n such that
Pn < p. Moreover, if n is the first integer such that p, < p and p), < p with p), ~ py,
then p — pl, < pn.

2. If (gn)n C P(M) is increasing, g, < q € P(M), and ¢ — qn < ppn, for all n, then
an /' q (with SO convergence).

3. > . pn=1
Proof. If p ~ p, < p, for all n, then P = 3" p;, and Py = 3, py, . satisfy Py < P and
Py ~ P. This contradicts the finiteness of M. O

Lemma 1.6. Let M be a finite factor without atoms. If p € P(M) is nonzero, then there
s a unique infinite sequence 1 < nj < ng < --- such that p decomposes as p = Zk21 p;%
for some (pp, )r, € P(M) with p),, ~ pn, for all k.

Proof. Apply part (1) of the previous lemma recursively. By part (2), the sum converges
to p. [

Definition 1.1. If M is a finite factor without atoms, the dimension is dim : P(M) —
[0, 1] given by dim(p) =0 if p = 0 and dim(p) = Y 5o, 27" if p # 0, where ny < ng < ---
are gven by the previous lemma.

Lemma 1.7. dim satisfies the following conditions:
1. dim(p,) =27".
2. If p,q € P(M), then p < q iff dim(p) < dim(q).
3. dim is completely additive: if ¢; € P(M) are mutually orthogonal, then dim(}", ¢;) =

>, dim(g;).

1.3 The Radon-Nikodym trick

We claim that dim extends to the trace 7 on (M)4 in the following way. If 0 < z < 1,
then z = > >, 2 "e,. So if we put 7(x) = > 27" dim(e,), this is well-defined. Now if
x € (M), we can take 7(z) = 7(z4+) — 7(z—). And then we can extend this to M. But we
have a problem; we cannot tell that this 7 is linear.



Lemma 1.8 (“Radon-Nikodym trick”). Let ¢, : P(M) — [0,1] be completely additive
functions with ¢ # 0 and ¢ > 0. There exists a p € P(M) with dim(p) = 27" for some
n>1 and 8 > 0 such that 0p(q) < ¥(q) < (1 +¢)0¢(q) for all g € P(pMp).

Intuitively, we want to think of ¢, 1 like measures. In other words, we can take a small
part of the space where ¢ and v are almost multiples of each other.

Proof. Denote F = {p : Ins.t.p ~ p,}. We may assume ¢ is faithful: take a maximal
family of mutually orthogonal nonzero projections (e;) with ¢(e;) = 0 for all i. Then let
f=1=>".e; # 0 (because ¢(1) # 0); it follows that ¢ is faithful on fM f, and by replacing
with some fo < f in F, we may also assume f € F. Thus, proving the lemma for M is
equivalent to proving it for fMF, which amounts to assuming ¢ is faithful.

If ¢ = 0, then we take § = 0. If ¢ # 0, then by replacing ¢ by ¢(1)"'¢ and ¢ by
(1)~ 1ep, we may assume that (1) = 1(1) = 1. We claim that this implies: There exists
a f € F such that for all gy € F with go < g, we have ¢(go) < 1¥(go)-

If not, then for all g € F, there is a gg € F with gp < g such that ¢(go) > ¥(go). Tkae
a maximal family of mutually orthogonal projections (g;); C F with ¢(g;) > ¥(g;) for all
i. If 1 =5, 9; # 0, then take g € F with g <1 —3".¢; and apply this condition to get
go € F with go < g and ¢(go) > ¥(go), contradicting maximality. Thus,

| —¢<;g@-) = Yeto) > ) w(;gi) —u) =1,

a contradiction. So this case is impossible.

Define 6 = sup{6’ : 0'¢v(g90) < ¥(g0) Vg0 < g,90 € F}. Then 1 < 6§ < oo, and
0o(g0) < ©¥(go) for all go € F with gy < g. Moreover, by definition of 6, there exists some
go € F with gg < g such that 0p(go) > (14 €)1 (go). We now repeat the argument for
¥ and 0(1 + )y on goMgo to prove the following:

We claim that there exists some ¢’ € F with ¢’ < go such that for all g; € F with
96 < go, we have ¥(g() < 0(1 +)p(gp)- If not, then for all ¢’ € F with ¢’ < go, there is a
9o < ¢' in F such that ¢ (g() > 0(1+¢)¢(gp). But then take a maximal family of mutually
orthogonal ¢} < go such that ¢(g}) > 0(1 + €)p(g.). Using one of the previous lemmas, we
get Y. gi = go. Then ¥(go) > 0(1+¢€)¢(g90) > ¥(go). This is a contradiction. So the claim
holds for some g; € F with ¢’ < go. Taking p = ¢/, we get that any ¢ € F under p satisfies
both Op(q) < ¥(q) and ¥(q) < 6(1 + €)p(q). By complete additivity of ¢ and 1, using a
previous lemma, we are done. O

Now apply the lemma to ¢ = dim and ¢ to be a vector state on M C B(H) to get the
following:

Lemma 1.9. For alle > 0, there exists some p € P(M) with dim(p) = 27" for somen > 1
and a vector state po on pMp such that for all ¢ € P(pMp), (1 + e 1po(q) < 2"dim(q) <

(1 +epo(q)-



We want to reproduce the linearity of the dimension function on pMp to the whole
space.

Lemma 1.10. With p,¢qo as above, let vi = p,va,...,von € M such that viv] = p and
Svvf = 1. Let o(x) == S wo(viaw)) for o € M. Then ¢ is a normal state on M
satisfying p(x*z) < (1 + &)p(xx™) for all x € M.

Proof. Note first that ¢o(x*z) < (1 + €)po(zx™) for all z € pMp (do it first for when z is
a partial isometry, then for x with x*z having finite spectrum). To deduce the inequality
for ¢ itself, note that if Zj vjv; = 1, then for any z € M,

o(az) = zl: 20 <v¢$* < EJ: vj’fvj> :nv;‘)
= ppo((viz*v}) (xjav;))

2

< (1+2) Y pol(vgou) (0a°))

Z’?j

= (14 &%) p(xz*). O

Lemma 1.11. If ¢ is a state on M that satisfies p(x*x) < (1 + €)p(xx*) for all x € M,
then (14 ¢)~to(p) < dim(p)(1 + &)p(p) for all p € P(M).

Proof. By complete additivity, it is sufficient to prove it for p € F, when we have vy, ..., von
as in the previous lemma. Then ¢(p) = p(vjv;) < (1 +¢€)p(v;v}) for all j, so

2"o(p) < (1+)* ) @(vjv}) = (1+¢)*2" dim(p).
J
Similarly, 2" dim(p) = 1 < (1 + £)22"p(p). O

1.4 Proof of the theorem
Now we can prove the theorem.

Proof. Define 7 as mentioned before. By the previous lemma, for every ¢ > 0, there is
a normal state ¢ on M such that |7(p) — ¢(p)| < € for all p € P(M). By definition of
|tau and the linearity of ¢, this implies that |7(z) — ¢(z)| < € for all x € (M4);. So
|7(x) — ¢(x)| < 4e for all z € (M);. This implies that 7(x + y) — 7(x) — 7(y)| < 8¢ for all
x,y € (M);. Since € > 0 was arbitrary, we get that 7 is a linear state on M.

By definition of 7, we also have 7(uzu*) = 7(x) for all z € M and u € U(M). So 7 is
a trace state. From the above argument it also follows that norm limit of normal states ¢,
so 7 is normal as well. O



This theorem also has a generalization.

Theorem 1.2. Let M be a von Neumann algebra that is countably decomposable (i.e. any
family of mutually orthogonal projections is countable). The following are equivalent:

1. M is a finite von Neumann algebra; i.e. if p € P(M) satisfies p ~ 1 = 1,7, then
p =1 (so any isometry in M is necessarily a unitary element).

2. M has a faithful, normal (equivalently completely additive) trace state .

Moreover, if M is finite, then there exists a unique normal faithful central trace, i.e. a
linear positive map ctr : M — Z(M) that satisfies ctr(1) = 1, ctr(z1z22) = 21 ctr(z)z2, and
ctr(zy) = ctr(yx) for al le,y € M and z; € Z.

Any trace T on M is of the form T = g o ctr for some state ¢ on Z. Also, co{uzu® :
ueUM)}NZ ={ctr(z)} forallz € M.

The central trace should be thought of like a conditional expectation onto Z(M).
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